

DEA-C01^{Q&As}

SnowPro Advanced: Data Engineer Certification Exam

Pass Snowflake DEA-C01 Exam with 100% Guarantee

Free Download Real Questions & Answers PDF and VCE file from:

https://www.geekcert.com/dea-c01.html

100% Passing Guarantee 100% Money Back Assurance

Following Questions and Answers are all new published by Snowflake
Official Exam Center

- Instant Download After Purchase
- 100% Money Back Guarantee
- 365 Days Free Update
- 800,000+ Satisfied Customers

https://www.geekcert.com/dea-c01.html 2024 Latest geekcert DEA-C01 PDF and VCE dumps Download

QUESTION 1

A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.

To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.

Which solution will meet the requirements with the LEAST operational overhead?

- A. Create an S3 bucket policy to limit the access each application has. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.
- B. Create an S3 Object Lambda endpoint. Use the S3 Object Lambda endpoint to read data from the S3 bucket. Implement redaction logic within an S3 Object Lambda function to dynamically redact PII based on the needs of each application that accesses the data.
- C. Use AWS Glue to transform the data for each application. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.
- D. Create an API Gateway endpoint that has custom authorizers. Use the API Gateway endpoint to read data from the S3 bucket. Initiate a REST API call to dynamically redact PII based on the needs of each application that accesses the data.

Correct Answer: B

Explanation: Option B is the best solution to meet the requirements with the least operational overhead because S3 Object Lambda is a feature that allows you to add your own code to process data retrieved from S3 before returning it to an application. S3 Object Lambda works with S3 GET requests and can modify both the object metadata and the object data. By using S3 Object Lambda, you can implement redaction logic within an S3 Object Lambda function to dynamically redact PII based on the needs of each application that accesses the data. This way, you can avoid creating and maintaining multiple copies of the dataset with different levels of redaction. Option A is not a good solution because it involves creating and managing multiple copies of the dataset with different levels of redaction for each application. This option adds complexity and storage cost to the data protection process and requires additional resources and configuration. Moreover, S3 bucket policies cannot enforce fine-grained data access control at the row and column level, so they are not sufficient to redact PII. Option C is not a good solution because it involves using AWS Glue to transform the data for each application. AWS Glue is a fully managed service that can extract, transform, and load (ETL) data from various sources to various destinations, including S3. AWS Glue can also convert data to different formats, such as Parquet, which is a columnar storage format that is optimized for analytics. However, in this scenario, using AWS Glue to redact PII is not the best option because it requires creating and maintaining multiple copies of the dataset with different levels of redaction for each application. This option also adds extra time and cost to the data protection process and requires additional resources and configuration. Option D is not a good solution because it involves creating and configuring an API Gateway endpoint that has custom authorizers. API Gateway is a service that allows youto create, publish, maintain, monitor, and secure APIs at any scale. API Gateway can also integrate with other AWS services, such as Lambda, to provide custom logic for processing requests. However, in this scenario, using API Gateway to redact PII is not the best option because it requires writing and maintaining custom code and configuration for the API endpoint, the custom authorizers, and the REST API call. This option also adds complexity and latency to the data protection process and requires additional resources and configuration. References: AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide Introducing Amazon S3 Object Lambda ?Use Your Code to Process Data as It Is Being Retrieved from S3 Using Bucket Policies and User Policies - Amazon Simple Storage Service AWS Glue Documentation What is Amazon API Gateway? - Amazon API Gateway

https://www.geekcert.com/dea-c01.html 2024 Latest geekcert DEA-C01 PDF and VCE dumps Download

QUESTION 2

A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.

The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.

Which AWS service should the company use to meet these requirements?

- A. AWS Lambda
- B. AWS Database Migration Service (AWS DMS)
- C. AWS Direct Connect
- D. AWS DataSync

Correct Answer: B

Explanation: AWS Database Migration Service (AWS DMS) is a cloud service that makes it possible to migrate relational databases, data warehouses, NoSQL databases, and other types of data stores to AWS quickly, securely, and with minimal downtime and zero data loss1. AWS DMS supports migration between 20-plus database and analytics engines, such as Microsoft SQL Server to Amazon RDS for SQL Server2. AWS DMS takes overmany of the difficult or tedious tasks involved in a migration project, such as capacity analysis, hardware and software procurement, installation and administration, testing and debugging, and ongoing replication and monitoring1. AWS DMS is a cost-effective solution, as you only pay for the compute resources and additional log storage used during the migration process2. AWS DMS is the best solution for the company to migrate the financial transaction data from the on-premises Microsoft SQL Server database to AWS, as it meets the requirements of minimal downtime, zero data loss, and low cost. Option A is not the best solution, as AWS Lambda is a serverless compute service that lets you run code without provisioning or managing servers, but it does not provide any built-in features for database migration. You would have to write your own code to extract, transform, and load the data from the source to the target, which would increase the operational overhead and complexity. Option C is not the best solution, as AWS Direct Connect is a service that establishes a dedicated network connection from your premises to AWS, but it does not provide any built-in features for database migration. You would still need to use another service or tool to perform the actual data transfer, which would increase the cost and complexity. Option D is not the best solution, as AWS DataSync is a service that makes it easy to transfer data between on-premises storage systems and AWS storage services, such as Amazon S3, Amazon EFS, and Amazon FSx for Windows File Server, but it does not support Amazon RDS for SQL Server as a target. You would have to use another service or tool to migrate the data from Amazon S3 to Amazon RDS for SQL Server, which would increase the latency and complexity. References: Database Migration - AWS Database Migration Service - AWS What is AWS Database Migration Service? AWS Database Migration Service Documentation AWS Certified Data Engineer -Associate DEA-C01 Complete Study Guide

QUESTION 3

A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company\\'s operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.

The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.

Which solution will meet these requirements with the LEAST operational overhead?

https://www.geekcert.com/dea-c01.html

2024 Latest geekcert DEA-C01 PDF and VCE dumps Download

- A. AWS Glue workflows
- B. AWS Step Functions tasks
- C. AWS Lambda functions
- D. Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows

Correct Answer: A

Explanation: AWS Glue workflows are a feature of AWS Glue that enable you to create and visualize complex ETL pipelines using AWS Glue components, such as crawlers, jobs, triggers, anddevelopment endpoints. AWS Glue workflows provide automated orchestration and require minimal manual effort, as they handle dependency resolution, error handling, state management, and resource allocation for your ETL workflows. You can use AWS Glue workflows to ingest data from your operational databases into your Amazon S3 based data lake, and then use AWS Glue and Amazon EMR to process the data in the data lake. This solution will meet the requirements with the least operational overhead, as it leverages the serverless and fully managed nature of AWS Glue, and the scalability and flexibility of Amazon EMR12. The other options are not optimal for the following reasons:

B. AWS Step Functions tasks. AWS Step Functions is a service that lets you coordinate multiple AWS services into serverless workflows. You can use AWS Step Functions tasks to invoke AWS Glue and Amazon EMR jobs as part of your ETL workflows, and use AWS Step Functions state machines to define the logic and flow of your workflows. However, this option would require more manual effort than AWS Glue workflows, as you would need to write JSON code to define your state machines, handle errors and retries, and monitor the execution history and status of your workflows3.

C. AWS Lambda functions. AWS Lambda is a service that lets you run code without provisioning or managing servers. You can use AWS Lambda functions to trigger AWS Glue and Amazon EMR jobs as part of your ETL workflows, and use AWS Lambda event sources and destinations to orchestrate the flow of your workflows. However, this option would also require more manual effort than AWS Glue workflows, as you would need to write code to implement your business logic, handle errors and retries, and monitor the invocation and execution of your Lambda functions. Moreover, AWS Lambda functions have limitations on the execution time, memory, and concurrency, which may affect the performance and scalability of your ETL workflows.

D. Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows. Amazon MWAA is a managed service that makes it easy to run open source Apache Airflow on AWS. Apache Airflow is a popular tool for creating and managing complex ETL pipelines using directed acyclic graphs (DAGs). You can use Amazon MWAA workflows to orchestrate AWS Glue and Amazon EMR jobs as part of your ETL workflows, and use the Airflow web interface to visualize and monitor your workflows. However, this option would have more operational overhead than AWS Glue workflows, as you would need to set up and configure your Amazon MWAA environment, write Python code to define your DAGs, and manage the dependencies and versions of your Airflow plugins and operators. References:

- 1: AWS Glue Workflows
- 2: AWS Glue and Amazon EMR
- 3: AWS Step Functions: AWS Lambda: Amazon Managed Workflows for Apache Airflow

QUESTION 4

A company has five offices in different AWS Regions. Each office has its own human resources (HR) department that uses a unique IAM role. The company stores employee records in a data lake that is based on Amazon S3 storage. A data engineering team needs to limit access to the records. Each HR department should be able to access records for only employees who are within the HR department\\'s Region.

https://www.geekcert.com/dea-c01.html

2024 Latest geekcert DEA-C01 PDF and VCE dumps Download

Which combination of steps should the data engineering team take to meet this requirement with the LEAST operational overhead? (Choose two.)

- A. Use data filters for each Region to register the S3 paths as data locations.
- B. Register the S3 path as an AWS Lake Formation location.
- C. Modify the IAM roles of the HR departments to add a data filter for each department\\'s Region.
- D. Enable fine-grained access control in AWS Lake Formation. Add a data filter for each Region.
- E. Create a separate S3 bucket for each Region. Configure an IAM policy to allow S3 access. Restrict access based on Region.

Correct Answer: BD

Explanation: AWS Lake Formation is a service that helps you build, secure, and manage data lakes on Amazon S3. You can use AWS Lake Formation to register the S3 path as a data lake location, and enable fine-grained access control to limit access to the records based on the HR department\\'s Region. You can use data filters to specify which S3 prefixes or partitions each HR department can access, and grant permissions to the IAM roles of the HR departments accordingly. This solution will meet the requirement with the least operational overhead, as it simplifies the data lake management and security, and leverages the existing IAM roles of the HR departments12. The other options are not optimal for the following reasons:

A. Use data filters for each Region to register the S3 paths as data locations. This option is not possible, as data filters are not used to register S3 paths as data locations, but to grant permissions to access specific S3 prefixes or partitions within a data location. Moreover, this option does not specify how to limit access to the records based on the HR department\\'s Region. C. Modify the IAM roles of the HR departments to add a data filter for each department\\'s Region. This option is not possible, as data filters are not added to IAM roles, but to permissions granted by AWS Lake Formation. Moreover, this option does not specify how to register the S3 path as a data lake location, or how to enable fine-grained access control in AWS Lake Formation. E. Create a separate S3 bucket for each Region. Configure an IAM policy to allow S3 access. Restrict access based on Region. This option is not recommended, as it would require more operational overhead to create and manage multiple S3 buckets, and to configure and maintain IAM policies for each HR department. Moreover, this option does not leverage the benefits of AWS Lake Formation, such as data cataloging, data transformation, and data governance. References:

- 1: AWS Lake Formation
- 2: AWS Lake Formation Permissions: AWS Identity and Access Management: Amazon S3

QUESTION 5

A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.

The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility.

Which solution will meet these requirements with the LOWEST latency?

A. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

B. Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the

https://www.geekcert.com/dea-c01.html

2024 Latest geekcert DEA-C01 PDF and VCE dumps Download

Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard.

C. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Create a new Data Firehose delivery stream to publish data directly to an Amazon Timestream database. Use the Timestream database as a source to create an Amazon QuickSight dashboard.

D. Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

Correct Answer: C

Explanation: This solution will meet the requirements with the lowest latency because it uses Amazon Managed Service for Apache Flink to process the sensor data in real time and write it to Amazon Timestream, a fast, scalable, and

serverless time series database. Amazon Timestream is optimized for storing and analyzing time series data, such as sensor data, and can handle trillions of events per day with millisecond latency. By using AmazonTimestream as a source,

you can create an Amazon QuickSight dashboard that displays a real-time view of operational efficiency on a large screen in the manufacturing facility. Amazon QuickSight is a fully managed business intelligence service that can connect to

various data sources, including Amazon Timestream, and provide interactive visualizations and insights123.

The other options are not optimal for the following reasons:

A. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard. This option is similar to option C, but it uses Grafana instead of Amazon QuickSight to create the dashboard. Grafana is an open source visualization tool that can also connect to Amazon Timestream, but it requires additional steps to set up and configure, such as deploying a Grafana server on Amazon EC2, installing the Amazon Timestream plugin, and creating an IAM role for Grafana to access Timestream. These steps can increase the latency and complexity of the solution. B. Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard. This option is not suitable for displaying a real-time view of operational efficiency, as it introduces unnecessary delays and costs in the data pipeline. First, the sensor data is written to an S3 bucket by Amazon Kinesis Data Firehose, which can have a buffering interval of up to 900 seconds. Then, the S3 bucket sends a notification to a Lambda function, which can incur additional invocation and execution time. Finally, the Lambda function publishes the data to Amazon Aurora, a relational database that is not optimized for time series data and can have higher storage and performance costs than Amazon Timestream . D. Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard. This option is also not suitable for displaying a real-time view of operational efficiency, as it uses AWS Glue bookmarks to read sensor data from the S3 bucket. AWS Glue bookmarks are a feature that helps AWS Glue jobs and crawlers keep track of the data that has already been processed, so that they can resume from where they left off. However, AWS Glue jobs and crawlers are not designed for real-time data processing, as they can have a minimum frequency of 5 minutes and a variable start-up time. Moreover, this option also uses Grafana instead of Amazon QuickSight to create the dashboard, which can increase the latency and complexity of the solution . References:

- 1: Amazon Managed Streaming for Apache Flink
- 2: Amazon Timestream
- 3: Amazon QuickSight : Analyze data in Amazon Timestream using Grafana : Amazon Kinesis Data Firehose : Amazon Aurora : AWS Glue Bookmarks : AWS Glue Job and Crawler Scheduling

https://www.geekcert.com/dea-c01.html 2024 Latest geekcert DEA-C01 PDF and VCE dumps Download

Latest DEA-C01 Dumps

DEA-C01 VCE Dumps

DEA-C01 Practice Test